Clinical Research for Cancer Patients

Sibel Blau, MD
Northwest Medical Specialties
Quality Cancer Care Alliance (QCCA)
Pierce County Survivorship Conference
August 9, 2017
Cancer Death Rates Down

A major study concludes that improvements in treatment have helped cut cancer death rates in half.

"From Killer to Chronic Disease: Drugs Redefine Cancer for Many" — Washington Post

"I think we really are in the midst of a revolution in the treatment of cancer" — Dr. Len Lichtenfeld, American Cancer Society

Annual Change in U.S. Death Rate from Cancer

<table>
<thead>
<tr>
<th>Period</th>
<th>Annual Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1975–1990</td>
<td>0.5%</td>
</tr>
<tr>
<td>1990–1993</td>
<td>-2.3%</td>
</tr>
<tr>
<td>1993–2001</td>
<td>-1.1%</td>
</tr>
<tr>
<td>2001–2006</td>
<td>-1.6%</td>
</tr>
</tbody>
</table>

Gains in Cancer Treatment Drive Improvement in Survival Rates

Share of Life-Expectancy Gain Attributable to Improved Treatment vs. Improved Detection, 1980–2000*

<table>
<thead>
<tr>
<th>Cancer Type</th>
<th>Life-Expectancy Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Hodgkins Lymphoma</td>
<td>3.1-3.6 yrs</td>
</tr>
<tr>
<td>Breast</td>
<td>5.9-6.0 yrs</td>
</tr>
<tr>
<td>Colon</td>
<td>2.8-3.2 yrs</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>0.6 yrs</td>
</tr>
<tr>
<td>Lung</td>
<td>0.4-0.5 yrs</td>
</tr>
<tr>
<td>ALL CANCERS</td>
<td>2.8-3.2 yrs</td>
</tr>
</tbody>
</table>

Note: Asterisk (*) indicates Life Expectancy gains from 1990-2000 because 1980 data was not available for these conditions.
Drug Discovery
Drug Development Takes Longer Than it Did in the Past

Developing a new medicine takes an average of 10–15 years; the Congressional Budget Office reports that “relatively few drugs survive the clinical trial process”
The Cost of Developing a New Drug Has Greatly Increased

Clinical trials are research studies that involve people to find new ways to improve treatments and the quality of life for people with disease.

Researchers design cancer clinical trials to test new ways to:
• Treat cancer
• Find and diagnose cancer
• Prevent cancer
• Manage symptoms of cancer and side effects from its treatment
Types of Trials

• Treatment Trials

 Drugs or Vaccines

 Approaches to surgery or radiation therapy

 Combination treatments, including some that work to boost your immune system to help fight the cancer

• Prevention Trials

• Screening trials

• Quality-of-Life/Supportive Care/Palliative Care Trials
“After my mother died from breast cancer, I wanted to do whatever I could to keep from getting cancer.”
Clinical Trial

• Every trial has a person in charge, usually a doctor, who is called the principal investigator.

• The principal investigator prepares a plan for the trial, called a protocol.

• The protocol explains what will be done during the trial. It also contains information that helps the doctor decide if this treatment is right for you.
The Protocol

• The reason for doing the trial
• Who can join the trial (called “eligibility criteria”)
• How many people are needed for the trial
• Any drugs or other treatments that will be given, how they will be given, the dose, and how often
• What medical tests will be done and how often
• What types of information will be collected about the people taking part
Informed Consent

- Informed consent is the process of learning the key facts about a clinical trial before deciding whether to participate.

- If the participant decides to enroll in the trial, the informed consent document will be signed. Informed consent is not a contract. Volunteers are free to withdraw from the study at any time.
Phases of Trials

Phase 1 (15-30 people)
- To find a safe dose
- To decide how the new treatment should be given (by mouth, in a vein, etc.)
- To see how the new treatment affects the human body and fights cancer

Phase 2 (Less than 100 people)
- To determine if the new treatment has an effect on a certain cancer
- To see how the new treatment affects the body and fights cancer

Phase 3 (From 100 to several thousand)
- To compare the new treatment (or new use of a treatment) with the current standard treatment
Clinical Trials Randomization

Patient information is entered into a computer.

The computer randomly assigns patients to two or more groups, helping to prevent bias.

Clinical Trials Randomization
Clinical Trials in the US

- Pharmaceutical Trials
- Publicly funded trials-NIH
Why Participate in Trials

• Clinical trials represent the engine for new treatment for cancer

• Only 3-5% of adult patients participate in trials in the US- (compared with > 60% of children)

• It will take a long time to discover benefits of treatment if participation remains low
Myths about Clinical Trials
Myth 1: I don’t want to be a guinea pig for an experimental treatment.

THE TRUTH:

Cancer clinical trials are developed with high medical and ethical standards, and participants are treated with care and with respect for their rights.
Myth 2: People might access private information about me if I participate.

THE TRUTH:

In nearly all cancer clinical trials, patients are identified by codes so that their privacy is protected throughout and after the study.
Myth 3: Cancer clinical trials are only for people with no other treatment options.

THE TRUTH:

Trials can study everything from prevention to early- and late-stage treatment, and they may be an option at any point after your diagnosis.
Myth 4: I’m afraid I might receive a sugar pill or no treatment at all.

THE TRUTH:

Cancer clinical trials rarely use placebo alone if an effective treatment is available; doing so is unethical.
Myth 5: I’m afraid that my health insurance will not help with the costs of a cancer clinical trial.

THE TRUTH:

Many costs are covered by insurance companies and the study sponsor, and financial support is often available to help with other expenses; talk to your doctor to understand what costs you could be responsible for.
Myth 6: I’m afraid that once I join a cancer clinical trial, there’s no way out.

THE TRUTH:
You have the right to refuse treatment in a cancer clinical trial or to stop treatment at any time without penalty.
Myth 7: I can only get clinical trials at the academic cancer centers.

THE TRUTH:

The community oncology centers provide cutting edge, advanced research to their patients.
Shift to Community Physicians

- Pharmaceutical industry has turned to private practice since late 1990s
 - No longer academic centers are the primary site for cutting edge research
 - Driving force: cost of development of new drugs

- In 1981, 80% of clinical trials went into academia. In 1998, this figure dropped by half to 40%

- Thousands of private physicians became principal or physician investigators allowing their patients to clinical trials close to home
Ten Oncologists, eleven mid-levels
Six clinics
~3,500 new patients annually
Diverse tumor types
 ◦ Solid
 ◦ Hematology
Long history of cancer research
Why Community Oncology

- Speed
- Cost
- Quality
NWMS Research Initiative

- Major infrastructure investment in 2002

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Research Employees</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Annual Studies</td>
<td>4</td>
<td>~35</td>
</tr>
<tr>
<td>Active Patients</td>
<td>31</td>
<td>326</td>
</tr>
</tbody>
</table>
New Era
The Immensely Complex Circuitry of a Cancer Cell

FGF HGF FGF-1 PDGF EGF TGF-α Cytokine-cytokine receptor interaction ECM-receptor interaction Wnt

Outside
TRK MET PDGFR ERBB2 β-catenin DCC

Grb2 Sos ErbB signaling pathway ECM FAK Wnt signaling pathway Adhesions function Tissue invasion & metastasis

PKC Ras JAK2 JNK Rafl MEK ERK P53

Casp3

APPL CASP7

AR HSP

Testosterone Dihydrotestosterone Other Ligands
The Number of New Targets is Growing

Lung Adenocarcinoma

2003

2012

Unknown

EGFR

KRAS

ALK fusions

HER2

PIK3CA

BRAF

NRAS

MAP2K1

ROS1 fusions

KIF5B-RET
Cancer Diagnostic Market is Rapidly Evolving

Molecular profiling is driving many new targeted cancer therapeutics

Target Markers

- HGFR
- RET
- KRAS
- VEGF/VEGFR
- AURKA
- CD4
- DDR2
- CCND
- EGFR
- ERB4
- RAF
- DNMT3A
- GNAQ
- BRCA1
- BRAF
- CDK
- TSCI
- NOTCH1
- MET
- HER2
- PTEN
- PIK3CA
- FGFR1
- FLT3
- FML1
- CDKN2A
- CD20
- IGF1R
- AKT1
- RATA
- STK11
- RAF1
- TEK
- TNF
- IGF/IGFR family
- KDR

Coming Soon

- ~500 compounds hitting
- ~140 targets in development

Subset of analyzed targets listed; data from BioCentury Online Intelligence Database
Personalized Medicine Clinical Trials by Year
Towards curing cancer

IMMUNOTHERAPY: Using the Body To Fight Cancer
Summary

• Exciting time for oncology with exciting new drugs, immunotherapy and testing abilities

• More adult patients need to participate
 – To help drug discovery
 – To develop biomarkers
 – To advance molecular diagnostics

• Data needs to be captured, analyzed and shared in all cases